
NN-based Poker Hand Classification and Game
Playing

Gautam Bhat
Department of Computer Science

Boston University
Boston, MA 02135
gautam@bu.edu

Kaviarasan Selvam
Department of Physics

Boston University
Boston, MA 02135
kavi21@bu.edu

Veena Dali
Department of Neuroscience

Boston University
Boston, MA 02135
vdali@bu.edu

Abstract

Poker is a family of complex card games, each with a different set of rules. In our
project, we utilize a simplified version of Texas Hold’em poker to build and train a
poker bot that learns to classify hands and devises a playing strategy in order to
be competitive player. We developed a system that uses a fully-connected neural
network that can be trained to understand the patterns between the cards and the
hands that can be formed from those cards. Thus, the trained neural network can
be the foundation of a poker bot. Once it can accurately classify hands, we devise
a playing strategy based on a number of parameters, and record our results. We
name our poker bot, ‘AlphaPo’.

1 Introduction

Poker consists of a variety of complex card games, each with a different set of rules. It is widely
regarded as the standard benchmark for AI in the space of incomplete-information games, where the
players do not have common knowledge of the state of the game at all times. Adding to the difficulty
of the challenge poker poses as compared to complete-information games like chess or Go, it also
has an element of betting and bluffing that makes it even more complicated. Moreover, the class of
incomplete information games consists of most games with practical significance, of which poker
exhibits rich features such as a broad range of human expertise to test against, and the aforementioned
betting and bluffing scenarios. Therefore, it makes creating a poker bot to play against human players
very difficult and an exciting problem to solve.

We focus on Texas Hold’em as the base variant of poker on which to model the poker bot as well
as the playing strategy. In this game, each player is dealt two cards, one by one, followed by the
dealer placing five cards face-down on the table. After the first round, the first three cards are
turned face-side-up, followed by a card each in the subsequent rounds, making it a maximum of four
possible rounds. Between rounds, all players (unless a player folded in a previous round) are given
the opportunity to place bets (fold, call, or raise). The winning pot goes to the player still in the game
with the strongest hand. The order of strength of hands (from weakest to strongest) is as follows:
Nothing in Hand, One Pair, Two Pair, Three of a Kind, Straight, Flush, Full House, Four of a Kind,
Straight Flush, Royal Flush.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



The goal of our project was to understand learning, playing, and complexity involved in modelling a
poker bot using machine learning techniques. Our approach was to start creating the poker bot from
the ground up, and adding layers of complexity as the project would progress. The playing strategy
does not implement all rules of poker yet, such as betting and playing blinds. The approach is instead
boolean, with the poker bot deciding whether to continue playing or to fold, instead of betting and
raising certain amounts of money. We shall refer to this version of the game as experimental Texas
Hold’em poker.

2 Related work

As mentioned before, solving poker and other incomplete-information games represents a problem
in computer science that has lots of attention from the research point of view due to its practical
importance in fields outside of AI, such as economics. Over the years, there have been many efforts
to design poker bots, using techniques ranging from traditional neural networks and probability-based
Bayesian networks to deep learning, game theory and evolutionary algorithms.

Yakovenko et al (2016) created a system, Poker-CNN, using Convolutional Neural Networks and rank
three tensor-based representation to play three distinct games of poker, using the same machinery to
learn patterns for three different poker games.

Just as recently, Heinrich and Silver (2016) employed a game-theoretic approach that involves deep
reinforcement learning methods for learning approximate Nash Equilibria of an imperfect-information
version of poker, Leduc poker. Their goal was to devise a scalable end-to-end approach for learning
approximate Nash equilibria without prior knowledge. As extraordinary as their findings were, the
software and source code required hardware and resources which was deemed as beyond the scope of
this project for the time being, due to limited hardware and time. Many systems could potentially take
several days to train even with GPUs. Therefore, instead of trying to improving on these, we decided
aim to create our own poker bot that could be implemented with limited hardware and resources
while not compromising on the accuracy and performance.

3 Data

A poker hand data set was obtained from UCI’s Machine Learning Repository to train the neural
network. The data set consisted of a poker hand of five cards, and the class the hand belonged to.
As is the case with real-world probabilities of hands occurring, the data set of 25000 instances was
largely biased towards ‘High Card’ and ‘One Pair’, having more than 20000 instances of those two
alone (only 5 ‘Royal Flush’ in comparison). In order for the neural network to successfully learn
and classify hands, other hands’ instances were added to remove this bias,increasing the data size to
about 70000 instances. The format of the data was changed to be in line with the architecture of the
neural network.

4 Methods

The first step in creating the poker bot is to train it to accurately identify hands, given a set of cards.
The network used for this classification problem is a two-layer feedforward network, with a sigmoid
transfer function in the hidden layer, and a softmax transfer function in the output layer. There are
85 input neurons, 50 neurons in the hidden layer, and 10 output neurons (each representing a type
of poker hand). We use Scaled Conjugate Gradient algorithm to train this network. Once trained,
weights of the network are taken and used to recognize hands during the playing strategy. The idea
behind formulating this strategy is to write an algorithm to estimate the winning likelihood based
on the cards that are dealt to the bot. This algorithm includes parameters that add weights to each
hand, define a risk factor and a compare a threshold value, which together influence the bot’s decision
making. These are the important parameters and their assigned values.

Occurrence of each hand P contains the probability of each hand occurring in a real-world game
of poker, ranging from 0.000154% for ‘Royal Flush’ to 50.1177% for ‘High Card’. The probabilities
are stored as a 10-element, rank one tensor.

2



Weight vector W is a 10-element, rank one tensor with weights assigned to each class, in order to
calculate the value of the decision function.

Risk factor Ideally between 0 and 1, this dictates the overall value of the decision function, and
symbolizes the amount of risk the bot is willing to take. Essentially, a higher risk factor will result in
the bot choosing to continue playing with a weaker hand.

Estimated frequency distribution Another 10-element, rank one tensor, that estimates the like-
lihood of a hand coming up, given the current cards dealt to the bot. For the first turn, there are 2
revealed cards and 5 hidden cards, resulting in 2118760 possible card combinations in subsequent
turns. During the second turn, 5 cards are revealed, and 2 are unknown, resulting in 1081 possible
card combinations. Similarly, the possible number of card combinations in the third turn given 6
cards and 1 unknown, are 46. F is an estimated frequency distribution of each class of hands, which
can be normalized to represent an analogous posterior probability.

Threshold value Threshold at each turn determines the numerical value the decision function
needs to exceed for the bot to continue playing. If Df < threshold, the bot shall fold.

These parameters combined are used to model the playing strategy.

Decision(Turn,Cards) = F (P,W,Rf , Threshold, F,NN)

The value of the decision function is computed as:

Df =
Rf

C

10∑
i=1

FiWi

Pi

where C is a constant term, predefined to normalize values of Df to a smaller range.

4.1 Playing strategy

The following pseudo code gives a brief overview of the algorithm and playing strategy:

{Generate/Deal Cards}
{Reveal two cards to bot}
turn_0
...Wait for opponent...
If decision(opponent) == 0

Return %Opponent Folded
If decision(turn_0) == 0

Return %Agent Folded
{Reveal next 3 cards}
turn_1
...Wait for opponent...
If decision(opponent) == 0

Return %Opponent Folded
If decision(turn_1) == 0

Return %Agent Folded
{Reveal next card}
turn_2
...Wait for opponent...
If decision(opponent) == 0

Return %Opponent Folded
If decision(turn_2) == 0

Return %Agent folded
{Reveal final card}
turn_3

3



Figure 1: Confusion Matrix

Table 1: Outcome Summary

Rf Wins Total

0.1 3 15
0.5 5 15
0.8 10 15
1.0 8 15

...Wait for opponent...
If decision(opponent) == 0

Return %Opponent Folded
If decision(turn_3) == 0

Return %Agent Folded
{Compare Hands}

5 Results

After fixing the bias prior to training, the neural network was able to accurately classify 94.8% of the
hands in the testing data. As can be seen from the confusion matrix in Figure 1, error in classifying
several ‘Three of a Kind’ and ‘Two Pair’ was accountable for the loss in accuracy. The curve of
receiver operating characteristic1 in Figure 2 shows the network performs very well in classifying the
hands correctly.

Outcomes of games were recorded to understand how the poker bot makes decisions as the risk factor
is varied when playing against opposition. The results are summarized in Table 1.

It is, however, important to note that, winning at poker depends as much on the poker bot’s cards
and strategy as it does on the opponents. Also, No wins can mean a draw, a loss, or an early fold.
Similarly, a win can also signify that the opponent folded first.

1ROC is a plot of the true positive rate (sensitivity) versus the false positive rate (1 - specificity) as the
threshold is varied

4



Figure 2: ROC

6 Discussion

From Figure 1, we see that the network has noticeable error when trying to classify ’Two Pair’, ’Three
of a Kind’, and ’Full House’. This is due to the similarity of the hands in that many card combinations
are similar, which tends to confuse the neural network. Regardless, the neural network does well in
classifying most hands, despite a comparatively small data set. A more vast data set can help train the
neural network to be more accurate, while removing the error of incorrect classification among hands,
since that can be a major deterrent in making better decisions.

The poker bot took very little amount of risk when Rf = 0.1, as expected, and ended up folding too
early even if the cards would have eventually won it the game. On the other hand, when Rf = 1.0,
the player took too many risks, eventually losing out more games than when Rf = 0.8. This is
essentially modelling different kinds of poker players based the risk they take, and also gives an
option to adjust Rf in order to optimize the strategy. The same is the case with the other parameters,
each yielding different kind of win-draw-loss ratios. The end goal would be to allow the bot to adjust
these parameters on its own, learning from every game.

7 Future Work

There is a lot of scope for further development on this project, with more time and capable hardware
required. As mentioned earlier, incorporating betting into the playing strategy should be the next
major step in building a more competent poker bot, more aligned to the rules of a mainstream variant
of poker. Another major aspect for improvement would be the playing strategy itself; a more dynamic
strategy would be needed to automatically adjust parameters as the game progresses, as compared
to having the same value of parameters throughout the game. There potential to incorporate Game
Theory with reinforcement learning in the construction of a more refined playing strategy. The poker
bot can be trained to play against itself, but it should also be configured to implement elements
of Game Theory throughout the entire “learning process”. This can be attained by recording the
outcome of games as a tensor and creating a data set out of it, and feeding this information to a
reinforcement learning strategy. Game-theoretic approaches can be coupled with the same, with
the poker bot playing against multiple iterations of itself where each agent is playing its best move,
leading to a Nash equilibrium.

As for the classification problems, it remains to be known if the neural network will be able to
differentiate between ’Three of a Kind’ and ’Full House’ if the network is fed more data pertaining to
those hand rankings.

5



Acknowledgments

We would like to thank Dr. Sang "Peter" Chin and Kun He for their dedicated support during the
progress of this project.

References

[1] Cattral R., Oppacher F., & Deugo, D. Evolutionary Data Mining with Automatic Rule Generalization. Recent
Advances in Computers, Computing and Communications, pp.296-300, WSEAS Press, 2002.

[2] Heinrich J. & Silver D. Deep Reinforcement Learning from Self-Play in Imperfect-Information Games.
University College London, UK, 2016.

[3] Lichman, M. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science, 2013.

[4] Yakovenko, N., Cao, L., Raffel, C., & Fan, J. Poker-cnn: A pattern learning strategy for making draws and
bets in poker games using convolutional networks. In 30th AAAI Conference on Artificial Intelligence, 2016.

6


	Introduction
	Related work
	Data
	Methods
	Playing strategy

	Results
	Discussion
	Future Work

